为了保证综合能源系统(IES)的运行效率和可靠性,能源需求的准确预测至关重要。提出了一种基于Pearson相关系数(PCC),长短期记忆(LSTM)神经网络和多任务学习(MTL)的多元负荷预测方法。首先,运用PCC选取与冷热电负荷相关性较大的影响因素作为模型的输入;然后,通过LSTM建立MTL的共享层,实现多元负荷的联合预测;最后,结合亚利桑那州立大学的实测多元负荷数据来测试所提模型的预测精度。结果表明:所提模型具有更高的预测精度。