摘要

针对传统惯导/卫导组合导航在复杂环境下易受干扰,观测量异常从而影响导航性能的问题,提出了基于鲁棒扩展卡尔曼滤波(extended Kalman filter, EKF)的组合导航方法。设计了基于微惯性导航系统(micro-electro-mechanical system-inertial navigation system, MEMS-INS)、全球导航卫星系统(global navigation satellite system, GNSS)及视觉里程计(visual odometry, VO)的融合框架,给出了在GNSS信号失效情形下的导航滤波模型,并将EKF与Huber方法结合,克服观测量受噪声干扰时对导航性能的影响,以提升系统鲁棒性。经仿真和KITTI数据集验证,MEMS-INS/GNSS/VO组合导航方法在GNSS信号失效时仍能输出较高精度导航结果,且可以较好克服异常观测值对系统的影响,具有较高可靠性和鲁棒性。