摘要

针对目前基于度量学习的小样本图像分类方法中难以充分提取重要特征问题,提出一种基于局部正交特征融合的小样本图像分类方法。首先,利用特征提取网络同时提取局部细节丰富的浅层特征和语义化强的深层特征;然后,通过一个通道注意力模块和一个多尺度特征自适应融合模块分别在浅层特征的通道维度和空间尺度上进行特征增强,以生成更显著且包含更多尺度信息的局部特征。最后,通过一个局部正交特征融合模块对得到的多尺度局部特征和初始深层语义特征进行局部正交特征提取和注意力融合,以充分利用图像的局部和全局特征信息,生成更能代表目标类别的特征表示。在mini Image Net、tiered Image Net和CUB-200-2011三个公开数据集上的实验结果表明:提出的方法可以获得更好的分类效果,在5way-5shot任务上的准确率分别达到81.69%、85.36%和89.78%,与baseline模型相比,分类准确率分别提升5.23%、3.19%和5.99%。