摘要

以最小化卸载成本为目标,提出一种结合轨迹预测的任务卸载策略,将任务卸载转化为服务器节点选择问题。构建一种基于时间序列的车辆移动轨迹预测模型,将其表述为一个非线性回归任务;依据车辆位置信息与通信范围,提出一种基于最短通信距离的动态协作簇建立方法,利用服务器计算能力和传输成本均衡边缘网络负载,减少车辆移动形成的系统开销;利用马尔可夫决策过程,结合移动轨迹预测和动态边缘服务器簇设计任务卸载策略,解决多边缘服务器覆盖场景下的服务器选择问题。试验结果表明,所提算法与其他算法相比,任务卸载成本在简单与复杂移动轨迹下至少降低了80%和57.8%,有效减少多边缘服务器协作时的轨迹预测误差和成本开销。