摘要
动态多目标优化问题广泛存在现实生活中,在环境发生变化后,需要进化算法具有快速收敛、快速追踪帕累托最优前沿和维持多样性的能力。对于环境变化严重、频繁的情况,传统的预测方法无法有效获得帕累托最优前沿解。针对该问题,提出了一种基于循环神经网络(Recurrent neural networks, RNN)信息累积的动态多目标优化算法(IA-RNN)。首先,提出了一种基于RNN信息累积的非线性预测方法,它利用RNN递归进行信息累积,提高了历史信息利用率,增强了预测的能力。其次,设计了一种基于个体的线性预测方法,利用参数矩阵对个体线性变化进行预测。线性预测与RNN非线性预测协同进化,可快速的追踪帕累托最优前沿。最后,设计了一种基于最小二乘法的参数修正策略,通过当前环境的近似帕累托最优前沿解反向指导参数修正,减小了误差堆积的影响。将IA-RNN与5种代表性动态多目标优化算法在14个DF基准测试问题上进行比较。实验证明,IA-RNN算法表现出更优的收敛性和多样性。
- 单位