摘要
本次试验以湖南省湘潭县为研究区,提取Landsat 8 OLI影像数据的56个遥感因子作为候选因子,结合皮尔逊相关系数和主成分分析两种方法对变量进行降维,构建多元线性回归模型(MLR)、误差反向传播神经网络(BP-ANN)、K最近邻模型(KNN)和随机森林模型(RF)进行蓄积量反演,并采用决定系数(R2)、均方根误差(RMSE)以及相对均方根误差(RRMSE)三个指标对模型进行精度评价。结果表明:三种机器学习模型的拟合结果均优于多元线性回归模型,其决定系数(R2)均大于0.6,其中RF最高,为0.67;四种模型中,三种机器学习模型的估测精度均比传统线性模型高出10%以上,其中随机森林模型(RF)精度最高,其均方根误差为57.5 m3·hm-2,相对均方根误差为24.2%。
- 单位