摘要

滑坡位移时间序列预测对滑坡灾害预警和防治具有重要意义。滑坡位移时间序列具有高度的非线性特征,含有大量噪音且采用常规非线性模型难以准确预测。对此,提出基于小波分析(WA)—灰色BP神经网络的滑坡位移预测模型。该模型先采用小波分析法将滑坡位移时间序列分解为不同频率分量的滑坡子位移,然后采用灰色BP神经网络对各滑坡子位移进行预测,在此基础上将预测得到的各子位移值相加,最终得到预测出的滑坡位移值。以GPS监测获得的郑家大沟滑坡#1监测点的位移时间序列为例,采用WA-灰色BP神经网络模型对其位移进行预测,并与WA-BP神经网络模型及未进行小波分析的单独灰色BP神经网络模型进行对比分析。结果表明,WA-灰色BP神经网络模型准确预测出郑家大沟滑坡#1监测点的位移值,且具有比WA-BP神经网络模型和单独灰色BP神经网络模型更高的预测精度。