摘要

针对手指静脉与手指关节纹的数据样本小且识别准确率易受各自固有属性限制以及非注册用户对系统识别准确率影响较大等问题,提出一种基于迁移学习的带拒绝识别阈值的手指静脉与手指关节纹共同决策同一主体的双模态分数级融合识别方法。对二者数据集进行数据扩充和图像尺寸调整;使用经ImageNet海量数据集训练后的Vgg19、Inceptionv3、Xception以及Resnet分别在二者数据集上进行参数调优;应用调优后的新模型进行分类识别,得到各自的匹配分数,再进行分数级融合,融合后的匹配分数与拒绝识别阈值比较,再进行最终的决策。该方法在公开数据集中识别准确率均可达99%,较各自单模态在各个网络中的识别准确率提高0.33%~15%不等。实验结果表明,采用迁移学习方法对指静脉与指关节纹进行分数级融合能够有效提高系统的识别准确率。