摘要
很多现实优化问题不仅有昂贵目标也有昂贵约束,而现有求解昂贵优化问题的代理模型辅助演化算法通常对候选解的所有约束进行评估,在评估次数有限的情况下,频繁评估可行域较大的约束不利于种群演化。针对这一问题,研究了求解昂贵约束优化问题的代理模型辅助算法,提出了一种自适应约束评估策略,根据种群演化情况评估可行域信息较少的约束,以节省在可行域较大的约束上的评估次数,在少量昂贵评估次数下自适应进行约束的选择及评估,更好地演化种群;为验证该策略的有效性和通用性,从两个思路设计了两种自适应约束评估的高斯过程回归模型辅助差分进化算法。这两种方法在15个约束优化测试函数中的11个取得显著优异效果;在利用时间延迟模拟昂贵评估次数的情况下,效率提升均能在94%以上,其中91.67%的测试例子效率提升在98%以上。另外,这两种方法在4个工业应用问题中均能取得优胜效果,表明其在昂贵工业约束优化问题中良好的应用前景。
- 单位