摘要

高分辨率遥感影像场景分类一直是遥感领域的研究热点.针对遥感场景对尺度的需求具有多样性的问题,提出了一种基于多尺度循环注意力网络的遥感影像场景分类方法 .首先,通过Resnet50提取遥感影像多个尺度的特征,采用注意力机制得到影像不同尺度下的关注区域,对关注区域进行裁剪和缩放并输入到网络.然后,融合原始影像不同尺度的特征及其关注区域的影像特征,输入到全连接层完成分类预测.此分类方法在UC Merced Land-Use和NWPU-RESISC45公开数据集上进行了验证,平均分类精度较基础模型Resnet50分别提升了1.89%和2.70%.结果表明,多尺度循环注意力网络可以进一步提升遥感影像场景分类的精度.