摘要
面对规模较大的图像识别任务时,基于卷积神经网络的深度学习方法存在训练时间过长的问题,导致识别效率不高。因此,提出一种基于局部特征深度信念网络的大规模图像高效识别算法。首先,该方法从原始图像中提取多个局部特征,并根据分配给图像的标签将每个局部特征分类。然后利用分类后的图像局部特征训练深度信念网络,获得网络的相关参数。最后利用深度信念网络进行图像识别。在CAS-PEAL-R1大规模图像数据集上进行了图像识别实验,结果显示:提出的算法优于其他深度学习方法,具有较好的准确性和高效性。
-
单位长沙市轨道交通运营有限公司; 湖南信息学院