摘要

针对传统蝙蝠算法收敛速度慢,求解精度低,易陷入局部最优等缺点,提出一种在速度公式中加入自学习因子并在位置公式中加入比例权重系数的改进方法。利用改进的蝙蝠算法对影响支持向量机分类精度的两个主要参数C和g进行寻优,获得最佳的参数组合并建立故障诊断模型,再结合溶解气体分析(DGA)数据获得故障诊断结果。实验表明,改进后的蝙蝠算法可以加快算法的收敛速度并提高求解精度。通过与传统的蝙蝠算法、粒子群算法、遗传算法寻优SVM获得故障诊断结果相比较,所提改进蝙蝠算法具有更高的故障正判率。

全文