摘要

为提高室内可见光定位系统性能,提出了基于遗传算法训练卷积神经网络(Genetic Algorithm Convolutional Neural Network, GACNN)的室内可见光指纹定位算法。该算法引入一维卷积神经网络学习模型,针对卷积神经网络的超参数设置,利用遗传算法对卷积神经网络进行训练,将超参数进行二进制编码后采用精英遗传算法对CNN进行训练,来解决卷积神经网络模型参数调节依靠经验和模糊最优化的过程。实验结果表明:在室内4 m×4 m×2.5 m的定位场景下,定位算法可以获得平均定位误差4.11 cm的定位精度。相较于卷积神经网络定位算法,平均定位误差降低了25%。对比分析了不同室内可见光定位算法的性能,验证了算法的技术优势。

全文