摘要
餐馆推荐可以利用用户的签到信息、时间上下文、地理上下文、餐馆属性信息以及用户的人口统计信息等挖掘用户的饮食偏好,为用户生成餐馆推荐列表.为了更加有效地融合这些数据信息,提出一种融合了多种数据信息的餐馆推荐模型,该模型首先利用签到信息和时间上下文构建"用户-餐馆-时间片"的三维张量,同时利用其他数据信息挖掘若干用户相似关系矩阵和餐馆相似关系矩阵;然后,在概率张量分解的基础上同时对这些关系矩阵进行分解,并利用BPR优化准则和梯度下降算法进行模型求解;最后得到预测张量,从而为目标用户在不同时间片生成相应的餐馆推荐列表.通过在两个真实数据集上的实验结果表明:相比于目前存在的餐馆推荐模型,所提出的模型有着更好的推荐效果和可接受的运行时间,并且缓解了数据稀疏性对推荐效果的影响.
- 单位