摘要
中文分词是中文信息处理的前提和基础.文章综合基于词典的分词方法和统计的分词方法的优点,旨在提出一种基于词性标注与分词消歧的中文分词方法,针对初次分词结果中的歧义集进行对比消歧.利用正向、逆向最大匹配方法以及隐马尔可夫模型进行分词,得到三种分词结果中的歧义集.基于词信息对歧义集进行初次消歧.通过隐马尔可夫模型标注词性,利用Viterbi算法对每种分词结果选取最优词性标注.并基于定义的最优切分评估函数对歧义集进行二次消歧,从而获得最终分词.通过实验对比,证明该方法具有良好的消歧效果.
- 单位