摘要
为提高敏感数据抽取效果,提出了融合注意力机制的人机交互信息半监督敏感数据抽取方法。融合类卷积以及人机交互注意力机制构建融合交互注意力机制双向长短词记忆(Bi-LSTM-CRF)模型,通过模型的类卷积交互注意力机制将敏感词转化为字符矩阵,采用Bi-LSTM对该矩阵进行编码获得敏感词字符级特点的分布式排列,通过Bi-LSTM对该分布式排列的二次编码获得敏感词上下文信息的隐藏状态,基于该隐藏状态通过类卷积注意力层与交互注意力层进行注意力加权,获得类卷积注意力矩阵与交互注意力矩阵,拼接两个矩阵得到双层注意力矩阵,利用交互注意力层门控循环单元升级双层注意力矩阵成新的注意力矩阵,经全连接降维获取敏感词对应的预测标签,实现人机交互信息半监督敏感数据抽取。实验结果说明:该方法可有效降低敏感数据抽取复杂度,具有较高的敏感数据抽取查全率。