摘要
聚类是无监督机器学习算法的一个分支,它在信息时代具有广泛的应用。然而,在多样化的聚类算法研究中,常存在密度计算需要指定固定的近邻数、需要提前指定簇数目、需要多次迭代完成信息叠加更新等问题,这些问题会让模型丢失部分数据特征,也会加大计算量,从而使得模型的时间复杂度较高。为了解决这些问题,受萤火虫发光和光信息传递、交流的启发,提出了一种萤光信息导航聚类算法(FLINCA,Firefly Luminescent Information Navigation Clustering Algorithm)。该方法由腐草生萤和聚萤成树两大模块构成,首先将数据点视作萤火虫,并采用自适应近邻数的方式确定萤火虫亮度,通过亮度完成萤火虫初步聚类,然后再根据萤火虫树进行簇融合,完成最终聚类。实验证明,与12种不同的算法进行对比,FLINCA在4个聚类Benchmark数据集和3个多维真实数据集上表现出较好的聚类效果。这说明基于萤火虫发光和光信息传递的FLINCA算法在聚类问题中具有广泛的应用价值,能够有效解决传统聚类算法中存在的问题,提高聚类结果的准确率。(相关代码开源在:https://github。com/firesaku/FLINCA)
-
单位成都大学