摘要

频率捷变技术发挥了雷达在电子对抗中主动对抗优势,可以有效提升雷达的抗噪声压制式干扰性能。然而,随着干扰环境的日益复杂,在无法事先了解环境性质的情况下,设计一种具有动态适应能力的频率捷变雷达在线决策方法是一个具有挑战性的问题。该文根据干扰策略的特征,将压制式干扰场景分为3类,并以最大化检测概率为目标,设计了一种基于多臂赌博机(MAB)的频率捷变雷达在线决策方法。该方法是一种在线学习算法,无需干扰环境的先验知识和离线训练过程,在不同干扰场景下均实现了优异的学习性能。理论分析和仿真结果表明,与经典算法和随机捷变策略相比,所提方法具有更强的灵活性,在多种干扰场景下均能够有效提升频率捷变雷达的抗干扰和目标检测性能。