摘要

变压器油中溶解气体含量是衡量变压器运行状态的重要指标。运用差分自回归移动平均模型(ARIMA)对变压器油中气体含量进行预测,该方法通过python编程以气体含量值对应的时间为索引输入预测模型,在建模中首先对时间序列平稳性进行单位根检验,采用差分处理的方法将原始不平稳时间序列转换为平稳时间序列,而后利用自相关函数和偏自相关函数参数选择原则得出若干组模型,在对若干组模型进行优选的过程中分别使用赤池信息、贝叶斯信息、汉南-奎因3种准则得出一组最优模型,最后通过相关检验方法对优选模型进行残差检验,并利用满足残差要求的模型对气体含量预测。实验表明,提出的预测方法有较高的预测精度,可以为合理安排变压器的状态检修提供有价值的参考。