摘要

为了有效去除实测振动信号中的噪声,改进了一种基于Kent混沌人工蜂群(KCABC)算法的振动信号小波阈值去噪方法。该算法采用Kent混沌映射初始化蜂群,引入锦标赛选择机制选择食物源,并结合混沌策略搜索最优解。基于广义交叉验证(GCV)阈值构造了目标函数,采用改进的KCABC算法搜索最优阈值,实现了不基于噪声先验知识的振动信号阈值去噪。通过对广州新电视塔4组实测振动信号的处理,比较了改进的KCABC算法与粒子群优化(PSO)算法、标准蜂群(SABC)算法以及Logistic混沌蜂群(LCABC)算法的去噪性能。结果表明:提出的KCABC算法具有较快的收敛速度和较高的搜索精度,能够有效去除高耸结构振动信号中的噪声部分。

  • 单位
    南京大学; 解放军理工大学; 计算机软件新技术国家重点实验室

全文