摘要
为快速准确识别核桃外观缺陷(黑斑、破裂),自行搭建图像采集系统采集样本图像。预处理后采用形态学和逻辑运算去除背景,基于样本图像提取18个颜色特征参数和20个纹理特征参数。采用形态学和逻辑运算提取缺陷部分和样本投影像素面积的比值t以及样本图像阈值分割后二值图像的欧拉数。分别采用回归系数法(Regression Coefficient,RC)和连续投影法(Successive Projections Algorithm,SPA)优选特征参数并建立偏最小二乘法(PLS)模型。结果表明,基于SPA法优选特征参数建立的模型性能最优。将SPA法提取的5个优选特征参数作为输入建立最小二乘支持向量机(LS-SVM)模型,并对预测集样本进行预测。结果表明,对正常核桃、黑斑核桃、破裂核桃的判别准确率分别为88.9%、83.3%、94.6%,总判别率为88.9%。本研究建立的方法能够很好的对核桃外观缺陷进行检测,为今后核桃的在线检测分选提供了技术支持。
- 单位