摘要

针对红外舰船目标图像数据少、获取难度高等问题,结合图像的几何变化以及金字塔生成对抗网络的特征拟合,提出一种几何空间与特征空间联合的红外舰船目标图像数据增强方法。首先,利用基于几何空间的几何变换、混合图像及随机擦除等图像变换方法对红外舰船目标图像进行增强;然后,根据红外舰船图像特点,改进金字塔生成对抗网络(SinGAN),在生成器引入In-SE通道间注意力机制模块,增强小感受野特征表达,使其更适合用于红外舰船目标;最后,在数据集层面联合基于几何空间的几何数据变换和基于特征空间的生成对抗网络两种方法,完成对原始数据集的数据增强。结果表明:以YOLOv3、SSD、R-FCN和Faster R-CNN目标检测算法为基准模型,开展红外舰船图像数据增强仿真实验,采用增强数据训练的网络模型的舰船目标检测平均精度(mAP)均提高了10%左右,验证了所提方法在小样本红外舰船图像数据增强方面的可行性,为提高红外舰船目标检测算法提供了数据基础。

  • 单位
    光电控制技术重点实验室