摘要

忆阻器是具有记忆和类突触特性的非线性电路元件.基于此特性,文中提出了一个基于STDP(spike-time-dependent plasticity)学习规则的忆阻桥突触电路,它具有可以作为人工神经网络突触的优势.根据此优势,将这个新的电路与其他电路和网络结合,构成全新的电路和网络.首先将该忆阻桥突触电路和3个附加的晶体管结合在一起,实现神经网络的突触运算,并构建完整的忆阻桥突触神经网络.然后再将它与细胞神经网络结合用于图像去噪、边缘提取、角检测和汉字识别.最后,通过一系列的仿真实验证实了该方案的可行性,说明基于STDP学习规则的忆阻桥突触神经网络更具仿生特性,而且集成度更高、模板更易更换,有望解决实时的复杂的智能问题.