基于GRU神经网络的雷州半岛近海岸能见度短临预报研究

作者:殷美祥; 罗瑞婷; 陈荣泉; 刘显通*
来源:热带气象学报, 2023, 39(02): 267-275.
DOI:10.16032/j.issn.1004-4965.2023.025

摘要

近海岸大气能见度变化具有复杂的非线性和局地性特征,且近海岸气象观测站少,一直是精细化预报业务的难点。利用GRU(Gated Recurrent Unit)神经网络,采用广东省湛江市国家基本气象站及其周边上下游观测资料,构建了雷州半岛近海岸能见度1 h时效短临预报的多站GRU模型、单站GRU模型和逐步回归预报模型,并进行了检验评估。结果表明,相比传统的逐步回归方法,GRU神经网络能更好地识别上下游能见度的时空变化特征,多站GRU模型平均绝对误差(MAE)、均方根误差(RMSE)、决定系数(R2)评分均明显好于多元逐步回归模型。模型结构对能见度短临预报效果至关重要,将上下游的气象特征引入到能见度短临预报模型可显著提升预报效果。多站GRU模型在个例检验中较单站GRU模型的MAE、RMSE分别下降了36%和29%,R2提高了30%,表明多站GRU神经网络对能见度预报具有明显优势,为近海岸能见度的精细化短临预报提供了新思路。

全文