摘要
在考虑工程风险及保险实际理赔情况的基础上,形成了含自然灾害、项目环境等7个指标维度的风险评价体系,利用粒子群(PSO)算法优化BP神经网络的初始阈值及权值,建立了公路工程保险费率厘定模型。将该模型应用于34个公路工程保险实际案例,通过PSO-BP神经网络拟合保险样本中风险指标因素与费率之间的关系,实现费率预测。对比分析PSO-BP神经网络与BP神经网络的仿真效果,结果表明,PSO-BP神经网络模型能较好地反映公路工程实际风险水平,预测准确度高,收敛速度快,适用于保险费率厘定。
-
单位湖南大学; 土木工程学院