摘要

为降低水电站长期运行过程中频繁的无规律动作对于水头高、库容小、调节性能差的水电站造成的损害,最大限度利用水头优势增发电量,提高水电站运行的效益性和安全性,提出了一种机理与数据混合驱动的水位预测方法。该方法通过PSO(Particle Swarm Optimization)算法优化耦合BP(Back Propagation)神经网络和水量平衡模型,其中,数据驱动模型提供基准值,水量平衡机理模型修正水位趋势的合理性;将该方法应用于沙坪二级水电站的水位预测,对比分析水量平衡模型、BP神经网络模型和耦合模型预测结果。结果表明:提出的耦合模型有效避免了机理模型的累积误差和数据驱动的反常性;相对于水量平衡模型和BP神经网络模型,该耦合模型具有较高的预测精度和实用性,其平均绝对百分比误差MAPE和拟合优度R2分别为0.001 3和0.97,预测幅度更贴近真实水位。研究成果可为水电站面对短期的水位变化提前做出反应提供理论依据。

全文