摘要
针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用仿真信号验证了改进算法的可行性和准确性。将实际采集到的微震与爆破信号进行改进EWT分解,借助相关性分析从分解得到的本征模态函数(intrinsic mode function, IMF)分量中筛选出最优分量IMF1~IMF5。进而将筛选到的IMF分量进行重构,并计算重构信号的MPE值。应用GK模糊聚类算法对微震与爆破振动信号进行分类识别。结果表明,微震信号的MPE值要小于爆破信号的MPE值,且当嵌入维数m=5,尺度因子s=12,延迟时间τ=1时,两种信号的MPE值差异最大。基于改进EWTMPEGK模糊聚类算法的分类识别准确率达到93.
- 单位