摘要
针对钛合金弹性模量快速预测的需要,采用合金设计公式对原始合金数据进行转换,利用转换所得的Mo当量、d-电子结合次数和d-电子结合能作为数据集;采用多层感知器、随机森林网络和卷积神经网络三种机器学习方法,基于数据驱动方式搭建钛合金成分与弹性模量的关系模型。结果表明,相比随机森林网络模型和卷积神经网络模型,多层感知器模型具有更优的预测性能和预测精度。此外,多层感知器模型的预测能力符合预期,其相关指数评分达到0.66,均方根误差为7.54 GPa;说明多层感知器适用于医用钛合金的数据挖掘和研发。
- 单位