Kinect骨骼数据驱动的人体动作二维特征融合与动作识别

作者:张成权; 唐家康; 汪志峰
来源:安庆师范大学学报(自然科学版), 2020, 26(01): 77-83.
DOI:10.13757/j.cnki.cn34-1328/n.2020.01.014

摘要

针对在高噪声环境中人体动作识别存在准确度和稳定性不高的问题,本文采用二维空间特征融合的方法,提出一种基于Kinect骨骼数据的人体动作识别算法。从人体三视图的投影来提取运动特征,可以消除人体自遮挡的影响。针对人体复杂动作,算法采用分层策略。利用Kinect获得的骨骼关节点坐标,根据人体三视图投影提取二维空间的人体关节角特征,并运用支持向量机(SVM)方法对动作进行粗分类;进一步提取二维投影平面内的关节位置矢量、角速度和加速度特征,运用隐马尔可夫模型(HMM)的方法对动作进行细分类。利用本文方法对公开数据集MSR Action 3D实验,平均识别率达93.37%,实验结果表明,该方法准确性较高,鲁棒性较强。