摘要

针对经验模态分解(EMD)的模态混淆问题,提出了一种新的抑制模态混淆的方法——基于伪极值点假设的经验模态分解(PEEMD)。与总体平均经验模态分解(EEMD)通过添加白噪声再进行总体平均的方式不同,PEEMD通过定义最小极值尺度,并用其度量其他极值尺度,通过增加伪极值点的方式来均匀化尺度,有效地抑制了模态混淆的产生。详细介绍了PEEMD方法,并通过仿真信号将其与EMD和EEMD进行了对比,最后,将PEEMD应用于转子碰摩故障的诊断中。仿真和实测信号结果表明,PEEMD在分量的精确性和抑制模态混淆的产生等方面要优于EMD和EEMD,是一种有效的信号分解方法。

  • 单位
    湖南大学; 汽车车身先进设计制造国家重点实验室