摘要
基于机器视觉的粗糙度测量方法大多是根据粗糙度关联指标建立预测模型,或者利用深度学习网络建立无指标预测模型,而这两类方法均存在着不足。一方面,人工设计指标的计算过程复杂,不利于在线检测。另一方面,深度学习模型则严重依赖大数据,数据量不足难以训练出有效的模型。针对以上问题,本文提出一种基于图神经网络的铣削表面粗糙度测量方法。该方法在训练阶段获取了自主学习的能力,而后仅需要少量铣削样本就能够完成铣削工件的粗糙度测量。试验结果表明,本文方法在铣削工件的粗糙度测量上不仅能够自动提取特征,而且表现出了较高的精度和良好的光照环境鲁棒性。
- 单位