摘要

提出基于优胜劣汰、步步选择的粒子群优化算法(SSPSO),弥补了一般粒子群优化算法容易陷入局部极值、早熟收敛或停滞的缺陷。并运用SSPSO对广义回归神经网络(GRNN)平滑参数P进行优化,充分利用SSPSO寻优能力强及径向基函数调整参数少的优点,建立厂房结构的振动响应预测模型,对某厂顶溢流式水电站的厂坝结构振动响应问题展开预测研究。通过分析预测效果得出:与一般的粒子群算法相比,所提出的SSPSO算法的寻优能力得到了很大的提高。与此同时,基于SSPSO优化的广义回归神经网络(SSPSO-GRNN)与其他网络相比,在预测精度、收敛性能、泛化能力等各个方面得到了很大提升。为水电站厂房振动响应预测提供了新的方法和思路,为增强厂房结构的智能化监测提供了保障。

  • 单位
    天津大学; 水利工程仿真与安全国家重点实验室

全文