摘要
高速摄影仪在超高帧率下(>10 000 FPS)易产生噪声,该噪声分布复杂,难以获取与有噪图像完全对应的清晰图像。针对该问题,提出一种基于非理想配对图像的卷积去噪网络训练方法。首先利用高速和低速摄影仪拍摄相同场景图像,获得有噪图像及与其对应的非理想配对清晰图像;然后,建立基于卷积神经网络的深度去噪模型,结合亮度一致化和图像对齐方法,实现非理想配对图像的监督学习,从而去除成像噪声;最后,引入模型量化技术将模型参数和激活值由32位浮点数量化为8位定点数,降低模型大小、内存需求和运行时间。实验结果表明,提出的去噪方法可有效去除高速摄影仪成像噪声,相比于其他方法,去噪图像峰值信噪比提高1.96 dB,结构相似性提高1.95%;通过模型量化,模型大小降低4倍,内存需求降低45.62%,运行时间降低37.5%。
- 单位