一种基于Pareto关联度支配的多目标粒子群优化算法

作者:汤可宗; 李佐勇; 詹棠森; 李芳; 姜云昊
来源:南京理工大学学报, 2019, 43(04): 439-480.
DOI:10.14177/j.cnki.32-1397n.2019.43.04.009

摘要

为提高多目标优化算法的收敛性和多样性,提出一种基于Pareto关联度支配的多目标粒子群优化算法(MOPSO-PCD)。该算法在严格遵守传统Pareto支配规则基础上,将灰色关联分析方法融入非劣支配解的进化过程,设计了一种新颖的Pareto关联度支配规则。该支配规则作用于全局最优粒子的选择过程,具有关联度最大的全局最优粒子将引领粒子群体向着真实Pareto前沿不断逼近。同时,将该支配规则应用于外部档案中非劣支配解的维护过程,可减少或避免最终解集多样性的损失,从而维护好外部档案中非劣解的分布过程。仿真实验表明,与被比较算法在ZDT和DTLZ等系列测试函数相比,MOPSO-PCD能够获得更好的Pareto最优前沿分布特性和较快的收敛效率。

全文