摘要
传统目标检测算法大多基于滑动窗口和人工特征提取,存在计算复杂度高和在复杂场景下鲁棒性差的缺点。近年来,研究人员将深度学习技术应用于目标检测领域,显著提高了算法性能。相比传统算法,基于深度学习的目标检测算法具有速度快、准确性高和在复杂条件下鲁棒性强的优点。从评价指标、公开数据集、传统算法框架等方面对目标检测任务进行阐述,按照是否存在显式的区域建议和是否定义先验锚框两种分类标准,对现有基于深度学习的目标检测算法进行分类,分别介绍算法的演进路线并总结算法机制、优势、局限性及适用场景。在此基础上,分析对比代表性算法在公开数据集中的表现,并对基于深度学习的目标检测的未来研究方向进行展望。
-
单位河北金融学院; 大连海事大学