摘要
在当前水资源短缺以及用水量不断增加的背景下,识别农村居民用水行为,对于农村地区居民用水安全和管理、缓解水资源短缺具有重要的意义。为此,提出了一种隐马尔可夫模型(Hidden Markov Model,HMM)和BP神经网络(Back Propagation,BP)相结合的组合模型,模型综合了BP网络优秀的分类识别能力和HMM强大的时域建模能力的优点。该模型首先为居民用水行为的6个事件分别建立1个HMM,然后计算各个模型的最佳状态的输出概率,再将此概率和期望输出共同训练BP神经网络,最后选取测试数据和已建立的组合模型进行匹配,得到识别结果。研究结果表明:该组合模型在用水行为识别准确度上比单独应用HMM模型高8. 78%,比单独应用BP神经网络高8. 92%,具有一定的应用价值。
- 单位