摘要
为弥补传统电动汽车锂电池SOC估计算法估计误差大的缺陷,考虑电动汽车动力电池复杂的工作条件,将参数在线辨识方法和修正协方差扩展卡尔曼滤波(MVEKF)算法结合,提出了一种锂电池SOC在线估计算法.新算法使用变遗忘因子递归最小二乘法实现模型参数在线辨识,利用修正后的状态估计值重新计算迭代过程中的协方差,并将新的过程增益值用于下一状态估计以减少滤波误差.恒脉冲放电和动态应力测试(DST)等实验表明:在电池复杂的充放电条件下,与EKF算法对比,MVEKF滤波算法估计误差更小,最多可减少5%的误差;在DST条件下的充电过程中,EKF会有较大的偏差且不稳定,而MVEKF算法可稳定地估计SOC,且鲁棒性强,适用于电动汽车电池复杂多变的工作条件.
- 单位