摘要

在医疗图像分割领域中,以臂丛神经(Brachial Plexus, BP)超声图像为例的部分超声图像中存在对比度低、边缘模糊和噪声多等问题,使得对目标区域的准确分割十分困难。为此,基于TransUnet网络框架将Transformer模块引入U-Net网络编码端,利用其自注意力机制更好地捕捉图像中的全局特征,提高模型的特征提取能力;同时将空洞卷积应用到网络的跳跃连接来增大感受野,降低特征图中的噪声影响,为解码端提供更显著的特征。实验表明,与传统的U-Net、SegNet以及基于Transformer的MedT(Medical Transformer)相比,设计的网络模型具有更高的Dice系数和IoU值,Dice系数较前三者最高提升了13.2%。

  • 单位
    金陵科技学院