摘要

为了监测水稻病害等级并及时做好预防,本文提出一种基于超绿超红算法(ExG+ExR)结合最大类间方差法(Nobuyuki Otsu,OTSU)分割水稻病斑区域。首先,针对传统阈值算法分割效果不佳的缺陷,利用加权平均值进行灰度处理,通过直方图均衡化改善图像质量,并且以自适应中值滤波保护图像细节,从而实现对图像的降噪及增强处理;其次,通过ExG+ExR结合OTSU依次从背景分割出水稻叶片和病斑区域;最后,本文提出的方法与复印称重法和KNN算法比较,在800×300图像中平均绝对准确率高达98.28%,并且只有1.53%的平均绝对误差率。对比结果表明,该算法能够有效分割水稻的病斑区域,为有效识别病害种类及等级奠定了基础。