摘要
随着制造业向数字化、智能化方向转型升级,基于数据驱动的装备智能运维成为了学术界和工业界研究的潮流。然而,当前剩余寿命预测方法存在时序信息提取能力弱、难以建立监测数据与装备真实退化趋势的准确映射关系等局限性。为解决上述问题,提出一种图结构联合时序数据驱动的装备剩余使用寿命预测方法。首先,融合图卷积网络的图时序信息表征能力与长短时记忆网络的长时序特征刻画能力,构建包含图卷积、长短时记忆和逻辑回归模块的剩余寿命预测模型;其次,利用特征相关性构造的具有时序特性的图结构数据、利用原始数据构造具有固定时间步长的时序数据,分别作为图卷积模块和长短时记忆模块的输入,以最小化预测损失为目标,训练并优化寿命预测模型;最后,利用轴承全寿命加速退化试验数据,验证所提方法的有效性,所提方法在单工况下RMSE为0.107,综合工况下RMSE为0.099。与领域内先进方法对比的试验结果表明,所提方法取得了最优的预测性能,可为装备的预测与健康管理提供决策依据,具有较强的工程应用价值。
- 单位