摘要

研究基于深度学习技术的无人机航拍图像目标检测算法,首先介绍目标检测算法SSD(Single Shot MultiBox Detector),并对其特征提取网络进行改进,采用稠密特征提取网络替换原网络的主干特征提取网络,提高算法的特征提取能力,从而提升了算法的检测精度。针对网络实时性问题,在算法中引入分组卷积,极大地减少了网络参数量,提升了网络推理速度。为解决训练中出现的正负样本不均衡问题,利用焦点损失(Focal Loss)改进了原算法的损失函数,进一步提升了网络的收敛速度和精度。最后,通过仿真验证了改进算法在目标检测精度上的优越性。

  • 单位
    北京遥测技术研究所