摘要

K-shell分解法能快速识别复杂网络中的关键节点,但是无法辨别同壳层内节点重要性的差异,并且低估了处于网络边缘位置的高度值节点的重要性。针对这两个问题,提出一种基于K-shell位置和两阶邻居的节点重要性评估方法。该方法根据K-shell分解过程中节点移除的顺序细化节点的全局位置信息,然后综合考虑节点的局部拓扑结构信息和全局位置信息,利用两步长内邻居节点的K-shell位置信息度量节点的重要性。在八个真实网络上用传染病模型进行仿真实验,结果表明,所提方法与其他五种相关方法相比能更准确有效地评估并区分节点的重要性。

全文