摘要
【目的】准确预测果树需水量。【方法】对采集地果园环境数据进行主成分分析,筛选出影响果树蒸腾量的关键因子。建立以长短时记忆(LSTM)神经网络为基础的预测模型来预测果树蒸腾量。为提高预测的精度,在LSTM神经网络的基础上加入了注意力(Attention)机制,形成Attention-LSTM预测模型。【结果】将改进的模型与其他模型的预测精度进行对比,仿真试验表明,该模型的预测精度最高,RMSE和MSE分别为0.487和0.062。【结论】该预测模型可以准确预测果树蒸腾量,从而实现果园精准灌溉并提高水果产量,具有一定的实际意义。
- 单位