摘要

针对现有三维点云分类网络采用人工设计费时费力的问题,提出早停可微架构搜索(early-stopping differentiable architecture search, ES-DARTS)算法。利用从人工设计网络架构中提取到的先验知识,预定义一个包含高效候选操作的搜索空间,可快速搜索出适用于三维模型分类任务的高性能网络模型;通过追踪网络搜索阶段各候选操作的权重变化,找出跳跃连接操作在双重优化过程中发挥不公平竞争作用的临界点并在此处停止搜索,以保证各候选操作之间的稳定性,解决DARTS算法搜索过程中易出现性能崩溃的问题。提出的算法在ModelNet40数据集上达到了93.2%的识别准确率,比当前人工设计的主流网络具有更高的识别准确率。