一种基于深度学习的动态场景HDR重建方法

作者:何刚; 卢星星; 宋嘉轩; 李云松; 谢卫莹
来源:2020-01-10, 中国, ZL202010026179.3.

摘要

本发明公开了一种基于深度学习的动态场景HDR重建方法,克服了现有技术中图像处理效果有待改进的问题。该发明含有以下步骤,在同一静态场景内用固定相机获取欠曝光、正常曝光和过曝光三幅图像;在动态场景中,用手持相机获取上述三幅图像,记为D1、D2和D3;用LK光流法对D1、S2和D3进行配准,图像序列记为R1、R2和R3和步骤1中得到的Ground Truth组成配对的训练集;利用相机相应曲线将R1、R2和R3变换到线性域,记为H1、H2和H3;利用对比度算子提取H1、H2和H3图像中的亮度信息,记为M1、M2和M3;利用梯度算子提取R1、R2和R3图像中细节信息,记为L1、L2和L3;设计基于Resnet的Attention模块。该技术生成的HDR图像细节丰富,对比度高,具有广色域高动态范围。