摘要
软件缺陷预测是软件开发过程中的一项重要技术,针对软件缺陷数据集的高维、小采样造成预测精度下降的问题,采用线性局部切空间排列算法对数据集降维处理,选用支持向量机作为基础分类器进行二值分类,建立软件缺陷预测模型,采用二维混淆矩阵评价模型的预测精度.实验结果表明,与其他模型相比,该模型可用较少的邻域点约简至更低的维度,不需要重新学习样本空间的流行几何结构,直接映射新的样本点,且预测时间耗费成本由13. 726 9 s降低至6. 217 s,给定参数区间寻优时间耗费由267. 442 1 s降低至165. 98 s,有效提高了软件缺陷预测的效率.
- 单位