摘要

基于CNN的像素级SAR图像分类利用了输入图像块的邻域信息,但没有凸显出邻域像元对中心像元分类结果的影响力,导致在高噪声条件下中心像元易出现类别误判。针对该问题,该文提出了一种基于点特征相似性的卷积神经网络(Point feature Similarity-based Convolutional Neural Network,PSCNN),并将其用于SAR图像分类,以凸显邻域像元对中心像元分类结果的影响力,从而减小误分,提升分类精度。实验结果表明,相比传统基于CNN的SAR图像分类方法,该算法一方面能更充分利用图像块的邻域信息,有效抑制相干斑的影响,提升匀质区域的分类精度;另一方面借助块匹配方...