摘要
[目的/意意义义]酿酒葡萄卷叶病是一种严重影响葡萄产量和品质的病害。然而,酿酒葡萄卷叶病感染程度类别之间存在严重的数据不平衡,导致无人机遥感技术难以进行精确的诊断。针对此问题,本研究提出一种结合细粒度分类和生成对抗网络的方法,用户提高无人机遥感图像中酿酒葡萄卷叶病感染程度分类的性能。[方法]本研究以蛇龙珠卷叶病识别诊断为例,使用GANformer分别对每一类的葡萄园正射影像的分块图像进行学习,生成多样化和逼真的图像以增强数据,并以Swin Transformer tiny作为基础模型,提出改进模型CA-Swin Transforme,引入通道注意力机制(Channel Attention,CA)来增强特征表达能力,并使用ArcFace损失函数和实例归一化(Instance Normalization,IN)来改进模型的性能。[结果和讨论]GANformer可以生成FID score为93.20的蛇龙珠虚拟冠层图像,有效地改善数据不平衡问题。同时,相比基于卷积神经网络(Convolutional Neural Networks,CNN)的深度学习模型,基于Transformer的深度学习模型在卷叶病感染程度诊断的问题上更具优势。最佳模型Swin Transformer在增强数据集上达到83.97%的准确率,比在原始数据集上提高3.86%,且高于GoogLeNet、MobileNetV2、NasNet Mobile、ResNet18、ResNet50、CVT和T2TViT等对照模型。而本研究所提的CA-Swin Transformer在增强数据后的测试集上达到86.65%的分类精度,比在原始的测试集上使用Swin Transformer精度提高6.54%。[结结论论]本研究基于CA-Swin Transformer使用滑动窗口法制作了葡萄园蛇龙珠卷叶病严重程度分布图,为葡萄园卷叶病的防治提供了参考。同时,本研究的方法为无人机遥感监测作物病害提供了一种新的思路和技术手段。
-
单位电子工程学院; 西北农林科技大学