摘要
为提高风速预测精度,本文从挖掘风速数据可预测性和优化预测模型性能两方面出发,提出一种融合完全经验模态分解(CEEMDAN)和改进的布谷鸟算法优化长短期记忆深度神经网络(ICS-LSTM)的风速预测模型。首先采用CEEMDAN降低风速序列的不稳定性,提高其可预测性。其次对分解得到的各子序列建立LSTM预测模型,并采用ICS优化LSTM的关键参数,提高LSTM预测模型的回归性能。然后对各个子序列采用最优参数LSTM预测模型进行建模预测,最后叠加子序列预测结果得到风速预测结果。经实测数据验证,本文所提模型的平均绝对误差和平均相对误差仅为0.82和0.95,对比研究表明本文所提预测模型的优越性。
- 单位