摘要

基于电阻层析成像(ERT)系统采集的垂直管气液两相流测量数据,将一维卷积神经网络(1D-CNN)与AdaBoost(Adaptive Boosting)相结合,构建1D-CNN-AdaBoost算法,进行了气液两相流流型辩识研究。该算法使用5个1D-CNN作为弱分类器,通过实验数据样本训练,结合AdaBoost形成最终的强分类器。将1D-CNN-AdaBoost算法与BP神经网络、支持向量机及决策树算法进行比较,结果表明,1D-CNN-AdaBoost算法辨识正确率高于其他算法,平均辨识正确率可达97%。